
Side Channel Analysis of Last Level Cache(LLC)

Size in Java

Ryan Unternahrer

May 28, 2024

1 Introduction

The central processing unit (CPU) of a computer uses a set of caches to
store data that may be needed soon closer to the CPU. This removes some
of the need to read from the random access memory (RAM) and therefore
increase the speed of program execution. Our goal is to be able to infer the
size of this cache without direct access to that information. This is called
a Side Channel attack and relies on indirect methods to gather information
about, or to influence the execution of, a piece of software.

Most modern computers have a three level system of caches1 with the Level
1 (L1) cache being the closest to the CPU, and therefore quickest to access,
and the Level 3 (L3) cache being the furthest from the CPU and the slowest
to access. If a piece of data is not stored in any of the caches and is instead
in the main memory when a program attempts to access it a cache miss
occurs. This will often result in a significantly slower speed to access this
data.

2 The Tools

2.1 Java

All code for this project will to written in the Java programming language.
We will rely on the System.nanoTime() command to measure time. This
returns data in Nano Seconds (ns).

2.2 Linux Environment

We are required to write and test all code in a Linux development environ-
ment. To fulfill this requirement I will use a Windows Subsystem for Linux

1WikimediaFoundation.https : //en.wikipedia.org/wiki/CPU cache

1



(WSL) running Ubuntu. This allows us to compile and run code as though
we were using a Linux machine.

3 The CPU

For this assignment we will use my laptop to run all code therefore it is the
cache of my laptop that we will be measuring. Below are the stats of my
laptops CPU.

CPU Info

CPU Name Intel Core i5-10300H

Clock Speed 2.50GHz

L2 Cache Size 1024 kilobytes

L3 Cache Size 8192 kilobytes

Table 1: Laptop CPU Info

As can be seen here there is a Level 3 (L3) cache of 8192 kilobytes on my
CPU. We want to overflow this cache in order to induce a cache miss. This
means we should expect to see a spike in access time around 8MB in array
size.

4 Theory

We will attempt to intentionally induce a cache miss. Our method for this
will be by creating an array that is too large for the system to hold all of
its data in the CPU cache. We want to measure many different sizes so we
can create a trend in the data and look for a spike in the amount of time to
access this information. To avoid any outlier cases we will run each size of
array 100 times and average the data. Therefore the output result for each
array size will be: average = totaltime

100 .

Our first method will be to randomly increment values in the array so that
we do not create any kind of pattern to our access. Once again to avoid
outlier cases we perform this a large number of times. For the purposes of
this experiment we will increment values 1,000,000 times in each run. This
means for each size the speed of access will be measured 100,000,000 times
which should be a sufficiently large dataset. I will time and average each
run rather than each access of data as the time to access data may be too
small to measure especially for data store within the cache.

Our second method will be to sequentially access the data in the each array.

2



This is an attempt to see if the accessing the data sequentially effects our
ability to infer information about the size of the LLC. To avoid the varying
sizes of array effecting our data if an array is too small for 1,000,000 separate
entries then the program will loop back to the beginning of the array.

5 Random Access

For the testing of random access I wrote the program cachetimerandom.java.
I based my program on ideas and code in the provide article from igoro.com.2

This program tests arrays from a size of 1 Kilobyte (KB) to 64 Megabytes
(MB) with the size doubling each time for a total of 16 sizes. Each test
consists of 1,000,000 increments of the data.

1 16

25
6

4,
10

0
8
,1
90

3
2,
80

0

0

10

20

30

40

50

60

70

80

Size(KB)

T
im

e(
m
s)

Average Time to Increment 1 Million Values in Arrays from 1KB to 64MB

Intel Core i5

As can be seen in the above graph the time to increment 1,000,000 values in
an array is roughly 8-10ms for arrays between 1KB and 4MB. As the array
size reaches 8MB the time required to perform the increments increases to
roughly 35ms and continues to climb. From this data we can infer that the
size of the LLC on the computer is roughly 8MB. This falls in line with
what we expect as in Table: 1 the CPU being tested has a LLC size of
8MB. This represents a successful side channel attack as we were able to
infer information about the computer without having direct access to that
information.

2Gallery of Cache Effects https://igoro.com/archive/gallery-of-processor-cache-effects/

3



6 Sequential Access

For the testing of random access I made a slight modification to my program
that allows for the elements of an array to be incremented sequentially rather
than randomly as in the previous test. This is done by tracking variable that
increments each time it is used and resets to zero when it reaches the maxi-
mum size of the array. This program can be found in cachetimeseq.java.

1 16

25
6

4,
10

0
8
,1
90

32
,8
00

0

0.5

1

1.5

2

Size(KB)

T
im

e(
m
s)

Average Time to Increment 1 Million Values in Arrays from 1KB to 64MB

Intel Core i5

As we can see in the above graph the the values tend to stay around 1.2ms
per run of 1,000,000 increments. There is a small spike at 64KB but this is
an outlier and though we ran each size 100 times to try avoid such outliers
they are still possible. We can see here that there is no large spike in time
with the sequential access method.

7 Comparison

In this section we will compare the two methods and discuss how they differ.
Below are the two methods plotted together.

4



1 16

25
6

4,
10

0
8
,1
9
0

32
,8
0
0

0

10

20

30

40

50

60

70

80

Size(KB)

T
im

e(
m
s)

Average Time to Increment 1 Million Values in Arrays from 1KB to 64MB

Random
Sequential

As can be seen above both methods start with a relatively flat trend this
is due to the array being fully cached up to a value of 8MB. After that
we can see the random method spikes in time as the array cannot be fully
stored in cache. The sequential method however remains on a flat trend
throughout the test. The sequential method also starts much lower than
the random method. I believe this is due to some form of predictive caching
that retrieves information for the cache in sequence as the order in which
information is needed can be predicted unlike the random method. This
makes a sequential method of iteration unusable for a side channel attack
on this processor and others that use a similar technology.

8 Conclusion

We have tested two different methods of performing a side channel attack
to infer the size of the LLC on a processor. The use of a random access
method showed very effective results and allowed us to accurately infer the
size of a CPU’s LLC. We also found that a sequential method of access was
not suited to performing side channel attacks as this method did not give us
any information that could be used to infer the size of the LLC. Therefore
we can determine that a random method of accessing data is much more
effective at performing side channel attacks in relation to cache size.

5


